FINAL FORMULAS

Useful formulas

1. LENGTHS, AREAS, AND VOLUMES
 - The circumference of a circle with radius R is
 \[L = 2\pi R. \]
 - The area of a disk with radius R is
 \[\pi R^2. \]
 - The volume of a ball of radius R is
 \[V = \frac{4}{3}\pi R^3. \]
 - The surface area of a sphere with radius R is
 \[A = 4\pi R^2. \]
 - The volume of a cone with height h and whose base has radius R is
 \[\frac{1}{3}\pi R^2h. \]
 - The surface area of a cone with height h and whose base has radius R is
 \[\pi R(R + \sqrt{h^2 + R^2}). \]

2. INTEGRATION OF FUNCTIONS OF MORE THAN ONE VARIABLE
 - The \textbf{double integral}
 \[\int_R f(x, y) \, dA = \int_R f(x, y) \, dx \, dy \]
 is equal to the signed volume of the 3-dimensional region between the graph of f and the xy-plane over the region R.
 - The \textbf{triple integral}
 \[\int_R f(x, y, z) \, dV = \int_R f(x, y, z) \, dx \, dy \, dz \]
 is equal to the average value of f times the volume of the 3-dimensional region R.
3. Change of co-ordinates

- **Polar co-ordinates** on a plane are given by

\[x = r \cos \theta \quad \text{and} \quad y = r \sin \theta. \]

The area form for integrating a double integral is given by

\[dA = dx \, dy = r \, dr \, d\theta. \]

- **Cylindrical co-ordinates** in 3-dimensional space are given by

\[
\begin{align*}
 x &= r \cos \theta \\
 y &= r \sin \theta \\
 z &= z,
\end{align*}
\]

where

\[r \geq 0, \quad 0 \leq \theta < 2\pi, \quad \text{and} \quad -\infty < z < \infty. \]

The volume form for integrating a triple integral is given by

\[dV = dx \, dy \, dz = r \, dr \, d\theta \, dz. \]

- **Spherical co-ordinates** in 3-dimensional space are given by

\[
\begin{align*}
 x &= \rho \sin \phi \cos \theta \\
 y &= \rho \sin \phi \sin \theta \\
 z &= \rho \cos \phi,
\end{align*}
\]

where

\[\rho \geq 0, \quad 0 \leq \phi \leq \pi, \quad \text{and} \quad 0 \leq \theta < 2\pi. \]

The volume form for integrating a triple integral is given by

\[dV = dx \, dy \, dz = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta. \]

4. Derivatives

- The **gradient** of a function \(f \) is the vector field

\[\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}. \]

- The **curl** of a 2-dimensional vector field \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} \) is the function

\[\nabla \times \vec{F} = \partial_x F_2 - \partial_y F_1. \]

- The **curl** of a 3-dimensional vector field \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k} \) is the vector field

\[\nabla \times \vec{F} = i(\partial_y F_3 - \partial_z F_2) + j(\partial_z F_1 - \partial_x F_3) + k(\partial_x F_2 - \partial_y F_1). \]

- The **divergence** of a 3-dimensional vector field \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k} \) is the function

\[\nabla \cdot \vec{F} = \partial_x F_1 + \partial_y F_2 + \partial_z F_3. \]
5. Path-independent vector fields

- A vector field \(\vec{F} \) is a **gradient or path-independent vector field** on a region \(R \), if there is a function \(f \) such that \(\vec{F} = \vec{\nabla} f \).

- If a 2-dimensional vector field \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} \) is path-independent, then
 \[
 \vec{\nabla} \times \vec{F} = \partial_x F_2 - \partial_y F_1 = 0.
 \]

- If a 3-dimensional vector field \(\vec{F} \) path-independent, then
 \[
 \vec{\nabla} \times \vec{F} = \vec{0}.
 \]

6. Line integrals

- Given a vector field \(\vec{F}(x, y, z) \) and a curve \(C \) parameterized by
 \[
 \vec{r}(t) = (x(t), y(t), z(t)),
 \]
 where \(\vec{r}(a) \) is the starting point of the curve and \(\vec{r}(b) \) the ending point, the **line integral** of \(\vec{F} \) along the curve \(C \) is given by
 \[
 \int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt.
 \]

- If \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k} \), then the line integral above can also be written as:
 \[
 \int_C F_1 \, dx + F_2 \, dy + F_3 \, dz = \int_a^b F_1 x' + F_2 y' + F_3 z' \, dt.
 \]

- **Fundamental Theorem of Line Integrals.** If \(\vec{F} \) is a gradient or path-independent vector field on a region \(R \) and is given by
 \[
 \vec{F} = \vec{\nabla} f,
 \]
 then given any curve \(C \) in \(R \) that starts at a point \(P \) and ends at a point \(Q \), the line integral of \(\vec{F} \) along \(C \) is given by
 \[
 \int_C \vec{F} \cdot d\vec{r} = f(Q) - f(P),
 \]
 where \(\vec{F} = \vec{\nabla} f \).

- In particular, if \(\vec{F} \) is a gradient vector field and \(C \) is a closed curve, then
 \[
 \oint_C \vec{F} \cdot d\vec{r} = 0.
 \]

7. Green’s theorem

Suppose \(C \) is a closed oriented curve that is the boundary of a 2-dimensional region \(R \), which lies to the left of \(C \). Then given a vector field \(\vec{F} = F_1 \vec{i} + F_2 \vec{j} \) on \(R \),
\[
\oint_C \vec{F} \cdot d\vec{r} = \int_R \partial_x F_2 - \partial_y F_1 \, dx \, dy.
\]
8. Flux integral

- An **orientation of a surface** \(S \) in 3-dimensional space is a consistent continuous choice of the direction of the normal vector at every point in \(S \).
- The **flux integral of a vector field** \(\vec{F} \) across an oriented surface \(S \) in 3-dimensional space is written as
 \[
 \int_S \vec{F} \cdot d\vec{A} = \int_S \vec{F} \cdot \vec{n} \, dA,
 \]
 where \(\vec{n} \) is the unit normal pointing in the direction specified by the orientation of \(S \).

9. Flux integral across the side of a cylinder

- **Cylindrical coordinates** \(r, \theta, \) and \(z \) satisfy
 \[
 x = r \cos \theta, \quad y = r \sin \theta, \quad z = z,
 \]
 where \(r \geq 0 \) and \(0 \leq \theta \leq 2\pi \).
- If \(S \) is the side of a cylinder with radius \(R \), then the outer unit normal is given by
 \[
 \vec{n} = \frac{x\vec{i} + y\vec{j}}{\sqrt{x^2 + y^2}} = \vec{i} \cos \theta + \vec{j} \sin \theta.
 \]
- The **flux of a vector field** \(\vec{F} \) across all or a piece of the side of the cylinder \(S \) with radius \(R \), centered on the \(z \)-axis, and oriented away from the \(z \)-axis is given by
 \[
 \int_S \vec{F} \cdot d\vec{A} = \int_S \vec{F} \cdot \vec{n} \, dA = \int_S \vec{F} \cdot ((\cos \theta)\vec{i} + (\sin \theta)\vec{j})R \, dz \, d\theta.
 \]

10. Flux integral across a sphere

- **Spherical coordinates** \(\rho, \theta, \phi \) satisfy
 \[
 x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi, \quad z = \cos \phi,
 \]
 where \(\rho \geq 0 \), \(0 \leq \theta \leq 2\pi \), and \(0 \leq \phi \leq \pi \).
- The outer unit normal of a sphere of radius \(R \) is given by
 \[
 \vec{n} = \frac{\vec{r}}{|\vec{r}|} = \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{x^2 + y^2 + z^2}} = \vec{i} \cos \theta \sin \phi + \vec{j} \sin \theta \sin \phi + \vec{k} \cos \phi.
 \]
- The **flux of a vector field** \(\vec{F} \) across a surface \(S \) lying on the surface of the sphere of radius \(R \) centered at the origin and oriented outward is given by
 \[
 \int_S \vec{F} \cdot d\vec{A} = \int_S \vec{F} \cdot \vec{n} \, dA = \int_S \vec{F} \cdot ((\sin \phi \cos \theta)\vec{i} + (\sin \phi \sin \theta)\vec{j} + (\cos \phi)\vec{k})R^2 \, \sin \phi \, d\phi \, d\theta.
 \]
11. Stokes’ Theorem

Given an oriented surface S 3-dimensional space with boundary C oriented so that S lies to the left of S and a vector field \vec{F} defined on a region containing S,

$$\int_C \vec{F} \cdot d\vec{r} = \int_S (\nabla \times \vec{F}) \cdot d\vec{A}.$$

12. Divergence Theorem

Given a 3-dimensional region R with boundary S oriented outward and a vector field \vec{F} defined on a domain containing R,

$$\int_S \vec{F} \cdot d\vec{A} = \int_R \nabla \cdot \vec{F} dV.$$